.. _sample notebook Sample Notebook ======================================================== We provide a sample notebook for interacting with the API. The ipynb file for this notebook can be found in ``[luptai-installation-directory]/src/python/notebooks/model_runner.ipynb``, and can be executed in a Jupyter environment (eg. Jupyter Lab). .. note:: To run the notebook the python LUPTAI modules must be in *PYTHONPATH* This can be achieved by editing the *enivronment variable* PYTHONPATH to include the directory that contains LUPTAI python source code. Alternatively, add just for this notebook by uncommenting the below cell and replace the path str with the path to the python source code on your local machine .. code:: ipython3 # import sys # sys.path.append(r'D:\src\LUPTAI\luptai_core\src\python') .. code:: ipython3 import os .. code:: ipython3 from luptai.model import ModelRunner from luptai.model.parameters import InputParameters, BatchSettings, MajorMode, PTMode from luptai.database.scenario_data import ScenarioDataConnection from luptai.model.model_data.export_data import export_model_data, AttributedActivitiesExport from luptai.model.model_data.import_data import ResultsImport Assign parameter values ----------------------- Adjust each of these variables as needed for your specific run. .. code:: ipython3 # The scenario we are interested in scenario_id = 'Scenario558' .. code:: ipython3 # Point to the directories that contain the scenario info working_dir = r'D:\LUPTAI\projects\test_project' paras_path = os.path.join(working_dir, 'Parameters/default.json') scenario_path = os.path.join(working_dir, f'Scenarios/{scenario_id}.sqlite') data_path = os.path.join(working_dir, r'ModelData') .. code:: ipython3 # Assembly directory, where the LUTPAI DLLs and EXEs are located on your local machine assembly_directory = r'D:\LUPTAI\codebase\luptai\bin' .. code:: ipython3 # Load up the parameters file input_paras = InputParameters.load_from_json(paras_path) .. code:: ipython3 # Connect to the scenario database sdc = ScenarioDataConnection(scenario_path) .. code:: ipython3 # The purposes we want to run, a list of the purpose types, as strings, to be used for this run. # Alternatively use the sdc.get_activities_list function to get all activities available in the scenario. purposes = ["BANK"] # purposes = sdc.get_activities_list() .. code:: ipython3 # Modes for the run major_modes = [MajorMode.WALK_ONLY, MajorMode.PT_AND_WALK] pt_modes = [PTMode.BUS, PTMode.TRAIN, PTMode.BUSWAY, PTMode.FERRY, PTMode.LIGHT_RAIL] .. code:: ipython3 # Time Periods time_periods = [input_paras.get_am_peak()] .. code:: ipython3 # init the needed objects runner = ModelRunner(assembly_directory) bs = BatchSettings() Setup for the run ----------------- No need to change anything here, it is just setting up the Model inputs based on the above variables .. code:: ipython3 # Populate the run settings for this batch bs.input_parameters = input_paras bs.major_modes = major_modes bs.pt_modes = pt_modes bs.time_periods = time_periods bs.project_id = "test" bs.scenario_id = scenario_id bs.scenario_model_data_root = data_path # Before adding purposes we check that they are in the scenario and turn them from strings to PyPurposes purps_in_scenario = sdc.get_activities_list() all_purposes = input_paras.get_purposes_as_py_purpose_list() bs.purposes = [p for p in all_purposes if p.get_activity_type() in purposes and p.get_activity_type() in [ap.get_activity_type() for ap in all_purposes]] Do the Run ---------- No changes necessary here this just runs the model. .. code:: ipython3 # export the data for the run export_model_data(sdc, data_path) .. code:: ipython3 # This actually does the run runner.do_batch_settings_run(bs) Get the results --------------- Here we save the results to the scenario database, and collect them in a dictionary of dataframes, which we can analyze in this very notebook. .. code:: ipython3 # get a dictionary of dataframes containing the results from the model runs. results = runner.get_results() .. code:: ipython3 # save the results to the scenario database for cr in results.keys(): result_file = os.path.join(data_path, f'{cr}.xml') if os.path.isfile(result_file): ResultsImport.from_xml(result_file).to_scenario_db(sdc) Analyse the results ------------------- Feel free to do any analysis of the results below .. code:: ipython3 first_result = next(iter(results)) print(f'Results for first 20 nodes of model run {first_result}:') results[first_result].head(20)